OSIRIS REx

OSIRIS-REx mission will meet with asteroid “Bennu” in 2018, collect samples and return back to Earth. What can we learn from this mission and how important it is? What’s the next best object to collect samples from?

Morgan Rehnberg (PhD student at University of Colorado, works with Cassini to study Saturn’s rings)

morgan

Samples from an asteroid like Bennu will help us understand the conditions out of which planets like Earth formed in the early Solar System. With each new exoplanet discovery, we find more evidence that confounds the traditional model of planetary formation, so this is vital information. If I could sample from elsewhere in the Solar System, I’d pick either Meecury or Mars. We need additional samples from cratered bodies in order to refine our dating methods. Today, the ages of pretty much everything are calibrated solely by the rocks returned from the Moon by the Apollo astronauts!


Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

paulcarr

OSIRIS-Rex is not the first asteroid sample return. In fact, when it returns to Earth in 2023, it should be the third sample return, with the Japanese Hayabusa and Hayabusa 2 missions ahead of it. Hayabusa only returned a tiny sample from an S-class asteroid, but it was confirmed to be asteroidal in nature. The NEAR mission launched in the mid 1990s was the first asteroid rendezvous mission, but did not return samples. From my perspective, the most important aspect of studying asteroids is to determine if they are ore-bearing, and I’m not clear if sample return does a whole lot better for that purpose than instruments like an X-ray spectrometer (OSIRS-REX is flying one called REXIS), which can measure the elemental composition. My understanding is that the asteroid Bennu was picked as a target because it is a C type asteroid, and may contain some organic material, which would be of great scientific interest. A sample return will of course provide tremendous detail about the material composing the asteroid’s regolith, and I always hope there will be interesting surprises – maybe even water bearing minerals. So far, the closest look we have had to a C type asteroid was in 1999, when NEAR flew by the main belt asteroid Mathilde. What NEAR saw was surprising – two huge craters in comparison to the size of the body. To absorb impacts that large, Mathilde must be quite low density – a sort of spongy texture. It will be interesting to see if Bennu is similar, and its laser altimeter should enable some precise measurements of its gravity field.


Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

antonioparis

Asteroid Bennu, like all asteroids, is a “time capsule” loaded with vital information regarding the formation of the Solar System. More importantly, the Osiris-Rex mission to Bennu is centered on studying the surface of the asteroid, which is covered in carbonaceous material. This material is a critical element in organic molecules required for life. It is possible, therefore, that the Osiris-Rex mission could finally unlock the secrets to how life on Earth began, and, more importantly, could provide clues for the search for life elsewhere in the Solar System!

To boldly go where no man has gone before

Many associate survival of our species with humanity becoming a interplanetary civilization. It’s important to prepare ourselves for an event that might one day force us to leave our home planet. In more distant future we might have to leave our solar system. Will we ever become an intergalactic civilization like we already are in science-fiction? What’s the hardest obstacle to overcome?

Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

frasercain1

The hardest obstacle to overcome is the weightless environment of space itself. Humans evolved in Earth’s gravity, and without it, our bones soften, our muscles atrophy, and our bodies suffer. Until we can develop some kind of artificial gravity environment, like a rotating space station, space travel will be lethal for any length of time. We need to first learn to just live and survive in space before we have any hope of reaching out to another star system.


Andrew Rader (SpaceX engineer, MIT PhD, author)

andrewrader

If we survive for the next 100 years, I think we will become an interstellar civilization (although maybe not for several hundred years – the first step is to expand into our solar system first). The greatest challenges are in rough order of difficulty starting with the most challenging: I) Surviving long enough to reach the stars (avoiding disaster on our planet, whether created by humans or something external); II) The will to expand beyond Earth (will we even choose to do so, or will we for example, transcend into AI); III) The vast distances involved and the technological challenges involved. These include the velocity you need to travel and/or time it would take to get to another star, and the energy you would need to be able to produce for an exceedingly long time at a great distance from any light or heat from the Sun (even our best nuclear technology can’t currently do this). It’s a problem of distance, time, and energy. Here’s a links to my videos about it.

Robotic: https://www.youtube.com/watch?v=Lt0YMLvgT5k

Human colonization: https://www.youtube.com/watch?v=0m7gcZLUcPU


Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

antonioparis

Emigrating beyond Earth is not a difficult task from a technological perspective. The current challenges are more centered on budgets rather than technology or human will. The most difficult challenge of interplanetary travel, in my opinion, is the challenge of humanity. Humans, today, are in the brink of destroying ourselves and our planet as well. The human population is increasing at an exponential pace while Earthly resources are diminishing at equal speed. Humans, eventually, will nonetheless have to travel beyond earth to survive as a species. We must, however, overcome the most difficult obstacle we conveniently ignore: the will to get along with other humans.


Pamela Gay (assistant research professor at Southern Illinois University, writer, co-host of Astronomy Cast)

pamelagay

Our science fiction stories show humanity escaping out to the stars, but our more terrestrial reality seems determined to keep us grounded. Two major problems currently face us. The first, quite simply, is resources. Human space exploration is a rich nation’s possibility, and as our global economy flattens, it is becoming harder to imagine any government-driven effort to colonize other worlds and other solar systems. At the same time, it’s impossible to predict what commercial space will make possible, and the extreme wealth of an elite few may be able to fill in gaps left by governments. While money is a current problem that has the potential to go away, the second problem is more likely to stay. That problem is human frailty. We are a race that can die from environmental extremes and disease. We periodically wage war, and we release toxins into our environment through our accidents and ignorance. The real question is, will we stay alive long enough to overcome money?


Ciro Villa (technologist, application developer, STEM communicator)

cirovilla

Be it for natural or man-made causes, there are a variety of possible future scenarios that we earthlings could face that could bring about the end of humanity or even life in its entirety here on Earth. This is why it is important to give serious consideration to plans for us to become a space faring civilization. Although we have a long way to go to arrive at the necessary level of technology and for us to be able to overcome a number of practical obstacles to make this feasible, it is important to start working toward this goal, this way at least our future generations can hope for the continuation of our species by embarking on “space lifeboats” toward new galactic shores. This is not going to be easy and it is going to take time and effort. We are now just making our first “baby steps” toward understanding how the human body reacts to hostile space environments and the lack of gravity and questions about our ability to withstand space environments are just now attempted to be answered with the hard work of our astronauts on the International Space Station. Probably one of the hardest obstacle to overcome is going to be having the ability to take down the barrier of skepticism of large portions of the public as a whole and raise realistic and not alarmist awareness that we live on a very fragile planet and that it is important to build contingency plans to leave it if we want the continuation of our species. Of course we hope that we will be able to achieve this goal before it will be too late.


Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

paulcarr

I tend to be skeptical of top-down views of the human future, and the more our species is spread out into the solar system, the more it will diverge, with separate populations each pursuing their own interests. From, this is an optimistic view. The kings and battles view of history has always been something of a delusion, and I think in the future it will become clear, with hopefully no kings and many fewer battles. So, I think the simple-minded notion of a colossal public works project sending great arks full of people in uniform to seed humanity among other worlds is not only unlikely, it is undesirable and likely to fail. Someone with the power to make that happen has too much power. However, I do believe that as mastery of space travel, energy and information compounds, our wealth will grow to the point that the project of embarking with one’s friends and families to the stars is a choice many will have. How this will be accomplished I don’t know, and neither does anyone else, just as the hunter gatherers just before the neolithic revolution could not possibly see what their world was about to become. It is only an approximate result, but Daniel Cartin estimated that the range needed from a starship in order to establish a network of colonies in the local solar neighborhood was about 10 light years. That’s a long distance from the human perspective, but is a cosmic stone’s throw, and when humans can live for hundreds of years and casually command petawatts of power, it will not be a daunting sea to cross. By then, we may not even need to send biological bodies – just beam our minds ahead at the speed of light after the ship arrives at a suitable destination. It would of course, take millions of years to colonize even part of the galaxy, and such a diaspora could easily lose steam after a while. Still there is the chance it will continue until we either collide the current residents or fill up the available resources. Of course, by “we” I mean descendants of humans, but they will be fragmented into at least as many many societies as solar systems they occupy. There will be no emperor. How we go from there to an intergalactic society I have no idea. Crossing ten, or even a hundred light years is nothing compared to crossing millions of light years. Each of is free to imagine their own scenario, but I have no idea how it could happen.

Vacation on the ISS

Everyone at least a little bit interested in space and astronomy dreams about going into space. There were 7 space “tourists” that paid money to go to the Internation Space Station. If given the opportunity to go for a little vacation in Earth’s orbit, would you take up that chance? How would you spend that time?

Andrew Rader (SpaceX engineer, MIT PhD, author)

Of course! (And hopefully beyond orbit too.)  Most people get space sick for the first few days in space from the changes in the way 0G accelerations are perceived in your inner ear, but hopefully that wouldn’t distract too much from the incredible views of our home planet and the sheer joy of floating free in microgravity. With views and fun combined, it space should prove to be one of the finest travel destinations imaginable. However, I think the main reason to go to space is to learn how to live there longer term. I’d want to be productive in actually building and testing hardware, conducting experiments, and paving the way for the long term settlement of space.

Ciro Villa (technologist, application developer, STEM communicator)

If given the opportunity, I would absolutely take the once in a lifetime chance to go up in space on the ISS.  Many people do not realize and appreciate the fact that all the hard work astronauts do up there in orbit day in and day out benefits us all down here on Earth.  Many of the technological and scientific advancements that have improved our quality of life right here on Earth have been spear headed by the research and experiments performed in the unique, natural zero gravity laboratory that the Earth’s orbiting space station provides, which has yielded so many invaluable findings and discoveries regarding how things behave in the absence of gravity. So, how would I spend my time up there?  Well, I suppose that would depend on what I would be allowed to do.  If under the constraint and watchful eye of my sponsoring government agency, then I would probably not have much of a choice but do the daily work and conduct the scheduled experiments which would be a great experience and opportunity all by itself.  But if I had “free reign”, then I would probably exploit technology to the max, of course!  Explore, investigate, and learn all that I could and then share with the public.  Have video conferencing, live updates, in short let the world see what I see and share my experiences in real time.  Plus hopefully enjoy some space pizza… http://news.bbc.co.uk/2/hi/americas/1345139.stm

Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

Given that I could afford it, you bet I would. I imagine I would spend much of the time staring out of the observation window at the Earth, camera ready. The rest of the time I would spend learning the details of astronaut life and tumbling around in microgravity. I would volunteer to help out with any of the regular work as well, and perhaps they would humor me a bit. No Bowie covers, though, which is best for all concerned.

Something huge is heading our way!

Scientific accuracy in media coverage of recent events is really a big problem today. Which media outlets you find best in being fair while covering controversial topics and which are terrible at it? Where should a person go for a most scientific, skeptical, logic view of everyday life (especially when it revolves around astronomy)?

Nicole Gugliucci (“Noisy astronomer”, blogger, educator, post-doc)

Well, it’s a little biased, but I do love to send my students to Universe Today or Bad Astronomy when it comes to the best coverage of astronomy news. Phil Plait in particular takes a skeptical look at everything that comes into his field of view, so he is a great filter against things that are bogus. That said, you cannot contain his enthusiasm when something scientifically wonderful IS announced!  When I’m delving into topics that are not astronomically related, I tend to get a lot of my news from public radio (NPR in the US). There is some pretty good science coverage, but mostly I go there for news on society, politics, and the everyday life stories that effect us without a whole lot of hyperbole. So check out and support your local public radio!

Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

This is a problem, and I’m afraid it’s not easy finding trustworthy sources. I’m pleasantly surprised when a mainstream media outlet treats a science story with nuance and depth. I’ve been involved in a few space exploration stories, and have even helped brief reporters. In those cases I had a deep knowledge of the subject matter, and I saw their stories so oversimplified that they were wrong. Only a few mainstream reporters understand technical issues, and even if they do, they are under time pressure that prohibits deep investigation and follow up. The other problem is that there seems to a single setting on the dial – the scientific finding is true, because a scientist published it, their institution wrote a press release about it, and now the media is reporting on it. The truth is, that reasonable doubt often exists, and the finding may ultimately fail, or in the worst case, be retracted. Some studies are even fraudulent, although I suspect that this is very rare in astronomy and other fields where there is little money at stake. Due diligence involves consulting independent experts and explaining to the reader what the assumptions, uncertainties and missing pieces are, instead of looking no deeper than the press release. Press releases are very likely not written by the scientists or engineers involved, but by a public relations team whose interest is drumming up attention and funding for their institution. We saw that quite recently in the Fast Radio Burst story, in which one research group thought they had identified a host galaxy for an FRB. The media reported it as if it were fact, when there were actually serious doubters within the radio astronomy community, who have since published contrary findings. The public needs to understand that these professional communities may need a long time to sort things out. Follow up is needed, and should be demanded of any media outlet you read for these stories. I want to point out that are some good, well informed reporters in the space and astronomy world, although many are now in new media. I recommend following Dr. Brian Koberlein’s articles (now in Forbes), and the Astronomy Cast with Pamela Gay and Fraser Cain. Other good communicators include Phil Plait, Emily Lakdawalla of the Planetary Society, and for physics, Dr. Ben Tippett of Titanium Physicists. That is not an exhaustive list, but a good start.

Robert Novella (co-founder and vice-president of New England Skeptical Society, co-host of Skeptics’ Guide to the Universe)

There are many wonderful astronomy news outlets out there. I often chide myself for not looking into them for fully but that’s because I’m so happy with my go-to Astronomy news outlet Phys,org. It covers not only Astronomy very well but all the major hard sciences in a way that’s in the sweet spot for scientifically literate readers. Technical, with no fluff or over-the-top jargon.  For a site that is both scientific and skeptical there’s none better than Phil Plait’s Bad Astronomy. Phil wins the trifecta in astronomy reporting for the following reasons. 1) Phil knows his shit. His technical details and factoids are spot on. 2) He is a skeptic who knows pseudoscience when he sees it and is not shy about calling it out. 3) His giddy love of science and humor shine through in all is writings.

The Force Awakens

We were waiting for another part of Star Wars trilogy for 10 years. How was it? How different was it from previous movies? With movies looking so far in the future can we even discuss its scientific accuracy?
Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

I wasn’t a fan of the prequels, but I found The Force Awakens to be fun and entertaining. I’ve never taken Star Wars very seriously, though. To me, it’s more Space Opera than Science Fiction (not that there’s ANYTHING wrong with that…). It wasn’t that much different for me, ignoring the prequels. I thought it was better written than the Lucas directed films, but that was not a high bar. there also seems to be some borrowing of thematic material from Harry Potter, which is not surprising, given that an entire generation was tuned into that story and its themes. Kylo Ren even looked a bit Snape-like to me, even though his motivations were quite different from Snape’s. For me, though, Kylo doesn’t touch “The Operative” in Serenity as a Space Opera Bad Buy With A Sword, but that is to be expected for a film franchise like Star Wars that finds much of its audience in kids – bad guys need to be not too evil. Scientific accuracy is not a strength of this genre. Hard science fiction that strives for at least plausibility is rare, although it seems to be making a comeback, with films like “The Martian” and “Ex Machina”. Most of what we see depicted in Star Wars and similar films can always be waved away with the notion that it involves physics not yet known to humanity., and that is in itself at least somewhat plausible. One thing we see depicted in the latest film is the salvaging of a once sophisticated technology for spare parts – this appears to be a galactic civilization that is in decline in some sense, although the people there have at least some idea of how their technology works. To me, that’s an interesting theme, and would like to see it explored further. Has war destroyed science, or advanced it?


Nancy Atkinson (Senior Editor for Universe Today, Host of the NASA Lunar Science Institute podcast & a NASA/JPL Solar System Ambassador)

I really enjoyed “The Force Awakens,” as it seemed to be a throwback to the original three movies in the Star Wars saga. I’m actually not a big fan of the second trilogy set. Of course, it was wonderful to see the “old” stars again (and yes, they’ve gotten old), and the new cast was great. But it also crossed my mind while watching it that this new movie was basically the same plot as before: a small band of resistance fighters goes up against the “Dark Side’ evil superpower. So, I’m kind of hoping the remaining two movies will come up with some usual twist or turn in the plot …. as long as there are still spaceships and robots, though!


Andrew Rader (SpaceX engineer, MIT PhD, author)

Quite a good addition to the Star Wars Universe! Star Wars actually takes place in the past, but obviously the general level of technology is quite a bit more advanced than our own. Since any sufficiently advanced technology would seem to us to be magic, I’m not sure it makes sense to focus on individual technologies represented. I can accept faster than light travel, ridiculously advanced power sources, the force, or tie fighters that fly through planetary atmospheres with no aerodynamic flight surfaces. So I’ll give these a pass. There were, however, a few inconsistencies that bothered me. I’m not sure they captured the true scale of an organization that would span a galaxy. Both the Republic and First Order seemed to live on a small scale – only a few planets, a small number of ships, etc., which isn’t consistent with the scale of the Star Wars galaxy of billions of stars. Additionally, the planet-destroying weapon and actual destruction of the planet was viewed in essentially real time by people on another planet. To be anywhere near possible, both the space station which initiated the attack, and the planet witnessing the attack would all have to be in the same solar system (based on the speed of light). This didn’t seem to be the case. But apart from a few small but significant scientific inconsistencies, it was an enjoyable movie for sure.


Robert Novella (co-founder and vice-president of New England Skeptical Society, co-host of Skeptics’ Guide to the Universe)

I thoroughly enjoyed the New Star Wars movie. It really was a perfect storm of fun for me. We had about 30 people with us and the theater had literally, the best damn movie seats I’d ever seen. Many of us had costumes as well and SGU brought our new light sabers of course (bladeless unfortunately). The movie itself truly brought back the fun and excitement I remember from that very first Star Wars movie so long ago. The Force Awakens was vastly different from the epically disappointing prequel movies. The acting, writing, and character interactions were all far superior. There were plenty of wonderful practical FX and just the right amount of CG where it was needed.  Compared to the original 3 movies however, one can make a compelling argument that it was too similar to A New Hope…..our hero grows up on a desert planet, a cute Droid with a secret message, a huge planet-killing machine etc. Scientific accuracy is always open to discussion, especially when the technology is based on actual physical devices. In these types of science-fiction movies, it’s always polite to allow for a few “Gimmies” for the sake of the plot like faster than light travel, the Force etc (as long as they are used in a consistent manner).  In the case of The Force Awakens, the lamest bit of science that isn’t a gimmie is the StarKiller base. I was ok with many aspects of this device except how it appears to fuel or charge its weapon. It is clearly shown sucking in an entire star. That was complete over-kill. That amount of mass/energy in such a small place would create a neutron star or a black hole. How would the base survive such an object in its belly? Why not absorb just a portion of the star?  The bottom line though is that they made a very enjoyable movie and have revived one of the most iconic movies series of all time. I really can’t wait for the next installments.