Prepare for warp speed

Science fiction has shown us spaceships travelling at enormous speeds, some of them had faster-then-light capabilities (and some have done the Kessel run in 12 parsecs). Which metods of transportation that are being developed or thought about in the near/far future you think are the most promising?
Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

I'm not optimistic about faster than light travel at any time in the future, although I would love to be proved wrong. Not only do we not have the technology to travel faster than the speed of light, we don't know what technology we need, or even if it's possible.

For the near future, something we could make happen would be nuclear space propulsion - first fission reactors, and then fusion reactors. My dream reactor would be a Helium 3 fusion reactor. Helium 3 is stable, and the Helium 3 fusion reaction produces Helium 4 (also stable), a proton (or two) (that can be used to generate electric power), and energy, but no neutrons. Neutrons are a problem that make most fusion reactors unusable for space applications. Such a reaction is far more mass efficient than chemical rockets, and with some work, could open up the entire solar system to us.

Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

In the near term, I'm mostly excited about the potential for light sails, like the Breakthrough Starshot. If this technology can be developed, we could see spacecraft traveling out to Pluto within a few weeks or even days. Once we've mastered this tech, we can start sending spacecraft out to other stars.

Ciro Villa (technologist, application developer, STEM communicator)

Ever since human have been able to use their imagination they have been dreaming of traveling far away in space to explore and discover new worlds. Unfortunately, as much as our brains can dream it, we are limited by our physical and technological capabilities to only be able to travel very nearby.

So far in the history of space travel, chemical rockets have been the main mean of propulsion and other new propulsion technologies are only at their infancy. Many studies are underway and much literature has been created to envision the design of new ways to propel human made spaceships further in space and in shortest amount of times. In the shortest term, more efficient forms of propulsion are being developed such as electric variants like Ion, Plasma and Hall-effect thrusters some of which are already operational on some space crafts (https://en.wikipedia.org/wiki/List_of_spacecraft_with_electric_propulsion). Also, Solar sails which are still somewhat experimental in nature with their size challenges and limitations, are being investigated as another promising mean to accelerate spaceships beyond the confines of our Solar System.

More futuristic forms of propulsion are unfortunately still only on paper at this time and it will take willpower, new discoveries, money, time or most likely all the above to be further developed. The hope is that with the accelerating pace of technological advancements, some of these new, exotic propulsion technologies will materialize at some point in our future make human exploration of deep space a reality.

Andrew Rader (SpaceX engineer, MIT PhD, author)

For faster than light travel, it's always possible that there will be some breakthrough that we can't anticipate. Apart from that, I think we're going to end up taking a long time to get to other stars, possibly in some kind of suspension or by just sending robots or human embryos. In terms of advanced propulsion in general, anti-matter offers the best mass to energy ratio we know of, but that's a long way off (hundreds of years?). Fusion rockets might be possible before the end of the century. These would be great for travel in the solar system, but probably not to another star.

Robert Novella (co-founder and vice-president of New England Skeptical Society, co-host of Skeptics’ Guide to the Universe)

Chemical rockets have served humanity very well for many decades. They have launched satellites into orbit and blasted our probes and landers into the nooks and crannies of our solar system. They have lifted humans to low earth orbit and our moon. All of this has given us a priceless cornucopia of images and data and mind-boggling discoveries.

These types of rockets however are not nearly as adept at ferrying our fragile bodies much beyond the moon. To keep us healthy and happy requires vast ships that are prohibitively slow and expensive for trips to the closest practical planet, Mars.

Luckily, conventional rockets are only a tiny subset of all rocket types, yet I've been disappointed for literally decades that we have made so little progress on other types of rocket technology for transporting humans.

I'm still holding out hope for the widespread realization that rockets using nuclear fuel are the only real option we have in the near future for getting humans well past our moon. The energy density of nuclear is orders of magnitude that of chemical energy. Nuclear thermal rockets using fission for example could weigh half as much as similarly powerful chemical rockets. Directly comparing chemical vs nuclear rockets is complex but many have concluded that such nuclear rockets would be at least as twice as efficient as chemical rockets. This would allow trips to mars requiring half the time, or less, which is especially important considering the more time spent in space, the more time you're exposed to life-threatening solar radiation and cosmic rays. Fission rockets would also allow for some serious maneuvering during a flight which is too expensive for modern chemical engines. You're just not much of a spaceship in my book if you can't maneuver easily.

A little beyond these fission rockets (which we can build now), we will create fusion rockets which should quickly predominate since they are even more efficient and produce less radioactive waste. Remember, a significant limitation to any ship's maximum velocity is the amount of fuel required to reach that velocity. You could actually reach 10% of the speed of light with chemical engines but you'd need a gas tank the size of our sun to do that. Doable? Yes, theoretically. Practical? Ummm, no. Fission would require far less fuel to reach that speed and fusion even less. So what would require the least amount of fuel? Read on...

Long-term scenarios for Space Travel will certainly offer humanity many fascinating hi-tech options but some type of antimatter engines will probably be required if you want to move something space ship sized as close as possible to the speed of light. Sure, there may be some bizarre quirk of physics that allows for superluminal travel but...probably not, so don't get your hopes up.

We know for certain right now that as you approach appreciable fractions of the speed of light, your mass starts increasing alarmingly fast (kinetic energy). To continue accelerating, your ballooning mass requires an exponentially increasing amount of energy. Eventually, to reach the speed of light itself you'll need infinite energy to move your infinite mass. Unless you have infinite energy in your back pocket, you'll never hit that speed.

To get as close as possible however, you'll need an efficient method of energy conversion and that's exactly what matter/antimatter annihilation provides. The energy released from such interactions is truly huge even if the masses involved are tiny (that is, after all, a key take-away from E=mc^2). The primary problem though is that we can't practically convert all the byproducts of matter/antimatter collisions into the kinetic energy of our spaceship. The bottom line then is that we will probably not be able to ever get arbitrarily close to the speed of light. The estimates seem to be all over the place but somewhere between 40 and 70 percent of the speed of light could be attainable eventually.

I'm totally ok with a spaceship going 753 million km per hour.

Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

For generations, science fiction has attempted to shape our future. From cameras on a watch as depicted in Dick Tracy; to warp speed, a common mode of travel used extensively in the Star Trek franchise. However, traveling faster than the speed of light or at warp speed, from a practical purpose, is not possible according to the laws of physics. The energy required to achieve the speed the speed of light, for example, would be infinite – sort of a an impossibility.

Today, and for the foreseeable future, spacecraft are limited to local orbits and interplanetary missions. There are numerous factors that shape spacecraft design and capabilities, but predominantly they are due to budget constraints, its intended function, and policy requirements. Extraordinary specific power and the ratio of jet-power to total spacecraft mass are required to reach interstellar targets within sub-century time frames. Some heat transfer is unavoidable and a tremendous heating load must be effectively handled. Thus, for interstellar rocket concepts of all technologies, a key engineering setback is controlling the heat transfer from the exhaust stream back into the spacecraft.

Based on research in the late 1950s to the early 1960s, it is technically possible to build spacecraft with nuclear pulse propulsion engines (i.e. driven by a series of nuclear explosions). This propulsion system contains the prospect of very high specific impulse and high specific power. This type of spacecraft, in my opinion, is our best hope for achieving interstellar travel.

In 1968, Project Orion team members proposed an interstellar spacecraft using nuclear pulse propulsion, which used pure deuterium fusion detonations with a very high fuel burn-up fraction. They calculated an exhaust velocity of 15,000 km/s and a 100,000-ton spacecraft able to achieve 20,000 km/s allowing a flight-time to Alpha Centauri of roughly 130 years. Later studies suggested that the top cruise velocity that can theoretically be achieved by a Teller-Ulam thermonuclear unit powered Orion spacecraft, supposing no fuel is saved for slowing back down, is about 8% to 10% of the speed of light. An atomic Orion can reach perhaps 3%-5% of the speed of light. A nuclear pulse drive spacecraft powered by Fusion-antimatter catalyzed nuclear pulse propulsion units would be comparably in the 10% range and pure matter-antimatter annihilation rockets would be theoretically capable of achieving a velocity between 50% to 80% of the speed of light.

In closing, although there have been numerous proposals and design concepts, spacecraft propulsion for interstellar flight is not an easy endeavor or economical. At current pace, we are at least hundreds or perhaps thousands of years before capable of interstellar travel to even the closest stars. Nevertheless, there are no doubts we will become an interstellar species in the foreseeable future.

Houston, “Eagle” has landed

Imagine yourself walking out of a lunar module "Eagle" on July, 21st 1969 and stepping on the surface of the Moon. What would be your first words? What would you like to do while performing EVA?
Andrew Rader (SpaceX engineer, MIT PhD, author)

Neil had 3 full days to think about what to say on his trip to the Moon, probably months before that, and a potentially a NASA PR team working on the problem. I'd be hard pressed to come up with something better. Something like: "Hello Moon, greetings from planet Earth. Thanks for all you've done for us, from inspiring our dreams when we look up a night, to stabilizing our planet's spin, to driving our ocean tides. We're glad you're here, and now we are too."

Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

I was 11 years old when Neil Armstrong walked out onto the moon, and I remember being deeply envious of him. I had no idea of the depth and duration of training required of astronauts, or the complexity of their equipment, and I even had a silly fantasy about stowing away on a the rocket.

If it had been me, I think I would have resisted delivering a scripted line, and instead would have blurted out something like “look at me! I’m on the moon!”. I’m sure it would have been nothing quotable. If I were free to do whatever I wanted on the EVA, my priorities would be running, jumping, and throwing things (I was 11!). I would have wanted to scale the nearest hill, thinking it would be easy to exploit the low gravity of the moon. Of course, I would have also put all kinds of rocks in my pockets.

Ciro Villa (technologist, application developer, STEM communicator)

After the Apollo era, men haven’t returned to the Moon in now almost 45 years. Humans are long overdue for a return to the lunar surface, which could provide tremendous opportunities to act as a “launchpad” to the rest of space. If I had the unique and historical opportunity to be that first man stepping out on the surface of the Moon, I would probably be speechless and have no words at all.

During my EVA I’d like to satisfy spirit, body, and mind. The human spirit will be in awe at the incredible sight of an “alien” landscape and scenery and the realization that I am on a rock located about 384,000 km from our home, the Earth. The body would be experiencing the lower gravity and have fun hopping around. The mind would be involved in any science possible and work on the mission at hand, hoping that whatever advancement is made will benefit the rest of humanity.

Robert Novella (co-founder and vice-president of New England Skeptical Society, co-host of Skeptics’ Guide to the Universe)

If I were the first to set foot on the moon It would be hard to beat the iconic words of Neal Armstrong, except by having them heard as was actually intended of course..."One small step for "A" man, One giant leap for mankind."

I've often thought that it would have been cool if both Neal Armstrong and that other dude (what was his name? ;)) both jumped and took that first step together.

My first words would probably be "holy crap". If I were able to rein in my emotions, perhaps I'd say something like "This first ever human footprint on the moon....brought to you by SCIENCE"

During the EVA I would thoroughly enjoy the sensation of moon gravity. I'd lift the biggest boulders I could manage and leap as far as possible. I'd throw small rocks and hands-full of regolith and watch their trajectory and descent. I'd look at the camera and say "See that? You can't fake physics like that on a stupid set on earth"

“Three Great Astronomy Discoveries I Didn’t Make” by Paul Carr

I have a little training in astronomy, although I can hardly call myself a professional. Becoming a professional at anything is a long, hard road, one I haven’t traveled far down in astronomy. No, I’m decidedly an amateur, and not a highly accomplished amateur at that.

Sadly, the word “amateur” has been cheapened a bit by modern use. It doesn’t really mean inexpert dabbler (although I will cop to that), but “lover.” An amateur does what they do for the love of it, and there are many highly knowledgeable and skilled amateur astronomers who do real science. Far from earning a living at astronomy, amateurs spend considerable sums of their own money - for love. If you are reading this, you probably understand why. The night sky and the cosmos at large combines natural beauty and profound fascination as few other things we can all experience.

In our time, nearly any object - save perhaps the odd undiscovered comet or asteroid - that is accessible to amateur equipment has already been imaged at multiple wavelengths using professional instruments. Sensitive astronomical surveys have been performed and are being performed on a regular basis, and have been for many generations, going back for more than two thousand years to the great Greek astronomer Hipparchus, who since had a major modern catalog named after him.

Since ancient times, the proliferation of astronomical catalogs and atlases has accelerated - from John Flamsteed’s sky atlas, to the 19th century Bonner Durchmusterung, to the Henry Draper catalog, to the US Naval Observatory’s catalog based upon the Palomar Observatory’s photographic sky survey, to the Hubble Guide Star catalog, up until the present, with the Gaia Source List containing more than a billion objects. What is remarkable about this accelerating growth is not only the number of catalogs and the broader coverage of the electromagnetic spectrum, but also the fact that they are now accessible to anyone, and you can also access images from many of these surveys. You no longer need a good university library and stacks of bound volumes to find the information you want.

I should point out that you can do meaningful citizen science at sites like Cosmoquest or Galaxy Zoo, but this does not mean that you can’t poke around at random in the vast library of astronomical knowledge and try to answer your own questions. I do this - and I return from my wanderings  with more questions, and so far, no answers.

Boyajian’s Star

In 2015, when the paper describing Boyajian’s Star and its bizarre lightcurve was first made public on Arxiv, I was curious about what was known about the immediate neighborhood in that patch of sky in the constellation Cygnus. To investigate this, I used a free tool called the Aladin Sky Atlas, provided by the University of Strasbourg in France. Aladin, with a modest learning curve, allows you to overlay many of the most widely used catalogs and image libraries. For example, if you just open up Aladin and enter “Boyajian’s Star” in to the Location field, you will get this window:

Figure 1 - Boyajian’s Star as Viewed in Aladin with Colored Digital Sky Survey


That’s Boyajian’s Star, aka KIC 8462852, centered in the purple reticle. You can zoom in from there and explore to your heart’s content. What I wanted to investigate was what was known about the other stars right around the target, so I zoomed in and overlaid one of the biggest catalogs,
2MASS (2 Micron All Sky Survey). The 2MASS has over 470 million objects in it, so chances are if you can see it in an image, it’s in 2MASS, as shown in Figure 2:

Figure 2 - Zoomed on Boyajian’s Star with the 2MASS catalog overlay.

Beyond the images though, I was interested in any measurements of the distance to any of these objects, and their proper motions - how fast they appear to be moving against the background of more distant objects. Objects with a distance similar to Boyajian’s Star or with similar proper motions are candidate neighbors, or even companions. The proper motion of Boyajian’s Star has been fairly well known (about 13 thousandths of an arcsecond per year West) for a while now, but it’s distance (a bit under 1500 light years) has only been inferred from its spectral type and apparent brightness.The little red squares in Figure 2 indicate an object in the 2MASS catalog. As you can see, all but some tiny faint smudges are cataloged by 2MASS. Most of these objects are in other catalogs, like the infrared ALLWISE catalog, or the Gaia Source List. If you are interested, you may also want to look up the PanSTARRS images, which don’t seem to be available via Aladin.

It turns out that directly measuring the distance to such a star using subtle variations in its apparent movement, or parallax, as the Earth moves around the Sun is very tricky, and only in recent times have we known more than a handful of these distances. So, we’re still not sure which of those stars are actual neighbors to Boyajian’s Star The only real measurement of its parallax was released only a few months ago by the Gaia team, and still carries a fair bit of uncertainty. We hope that with future Gaia data releases (perhaps one as soon as late 2017), we will have better information, not only about Boyajian’s star, but its neighbors as well.

So, lesson learned - many more objects have been cataloged than have been closely studied. We only know the spectral type and other information about Boyajian’s Star because it’s weird light curve as observed by the Kepler Space Telescope triggered a number of follow-up observations. As I poke around in these catalogs, I notice more and more, and with some guidance from professionals, I am able to start making sense of things, and also learning how to be more cautious.

Did a Star Go into Hiding?

In 2016, three Swedish astronomy students published their finding about a clever new approach to SETI - looking for stars that had vanished between surveys. In the sample of objects they studied, they found one faint object that appeared to be in a US Naval Observatory Catalog, but had vanished from subsequent, more sensitive surveys. I interviewed the lead author, Beatriiz Villarroel for my podcast, the Wow! Signal. Villarroel’s team weren’t sure this object was even a star, but I was intrigued by the possibility of a SETI discovery.

Using Aladin and the Vizier server, I found an image from the Sloan Digital Sky Survey and overlaid the USNO B1 catalog (Figure 3), represented by the red crosses. Right in the center is where the missing object, poetically named 1084-0241525 was, but as you can see, there is nothing there now. It’s also missing from all the other major catalogs, but keep in mind we don’t really know its proper motion. It may have moved a little over the decades, since the Palomar survey images upon which the northern part of USNO catalog is based were mostly taken in the 1950s. In 50 years, this object could have potentially moved a few arcseconds, depending on how close to us it is.

Figure 3 - USNO B1.0-1084-0241525 location on the g band SDSS image in Aladin. The red crosses are objects in the USNO catalog. Unfortunately, the star was too dim to be seen on the old photographic plates at Harvard, or to be regularly monitored by the AAVSO.

The conjecture is that if someone out there was building something around this star (if it is a star) that was hiding it from our cameras, it might be heating up enough to be visible in the infrared.  Villaroel’s team looked for this, but didn’t see anything. However, if we overlay the infrared ALLWISE survey catalog (the little blue circles), and look just outside their 5 arcsecond search radius:

Figure 4 - the ALLWISE catalog overlay around the missing star location in Aladin

You can probably guess what I was thinking. Some object moving fairly fast against the sky - a bit more than a tenth of an arcsecond per year  - had reddened so much that it had once been visible, but was now only visible in the infrared. And yes, that is a bit odd. For that to be a SETI detection is still not a slam dunk, but is much closer than we usually get.There is nothing visible under the reticle, but just to the north, about 6 arcseconds away, is an infrared object spotted by WISE, J145736.52+182507.8, that doesn’t appear to have any corresponding optical counterpart.  

The WISE space telescope, back when it was able to keep its focal plane extremely cold,  took measurements in 4 bands from in the infrared. These bands are called W1, W2, W3, and W4, and run from W1 centered at 3.35 microns wavelength to about 22 microns for W4. For comparison, the light you can see with your eyes is the neighborhood of half a micron in wavelength. Normally, the infrared bands for a star are on what is called the Rayleigh-Jeans tail - that is,  the infrared spectrum is fairly flat, and the brightness wouldn’t vary that much from band to band.

Sadly, what we know from WISE isn’t enough. W1 and W2 are fairly close in brightness, as you would expect, but the signal to noise is too low, and the best you can say is that the source is no brighter than a certain magnitude in W3 and W4 - it could be much dimmer. Maybe someday we’ll have a survey that nails down the infrared spectrum of this object, but WFIRST may not be enough, since it will only survey out to about 2 microns wavelength.  So, I haven’t found the missing star - yet.

The Mysterious Gaia Dipper

I hope you know I’m using the word “mysterious” here ironically. This word used to mean something, but now I’m afraid it’s just cheap clickbait.

ESA’s Gaia mission is doing some really interesting things right at the cutting edge of what is possible. One of the things it does as it scans the sky is measure the brightness of stars in both a blue and red band. The Gaia team keeps track of the brightness measurements for individual objects and publishes an alert when it detects that the brightness has changed by a significant amount. It has spotted quite a few supernovae this way, for example.

A small fraction of the Gaia alerts note when the brightness of the object drops considerably. I started tracking these dippers because I wanted to see if Gaia might possibly spot something that behaves like Boyajian’s Star. No doubt many of the dippers are what are called Young Stellar Objects, stars that have just formed and are still surrounded by a large disk of gas and dust.

One of the first ones of these I noted was Gaia 16bnj. Here’s what its Gaia light curve looked like (Figure 5):

Figure 5 - The lightcurve for Gaia 16bnj

Here’s the colorized WISE image:Those are very sharp dips shown in Figure 5 - quite a bit deeper than Boyajian’s Star, and the two dips are roughly the same size as best as we can tell. Using Aladin, I was able to quickly see that this relatively faint object is also in the ALLWISE catalog, as J200207.30+174649.7.

Figure 6 - Colorized WISE image for Gaia 16bnj

Ah, but you guessed it, wet blanket time. WISE astronomer and SETI researcher Jason Wright pointed out that there were problems with these measurements:The object of interest is at the center of Figure 6, with a little blue circle around it. When I looked at the WISE magnitude data at first, I got pretty excited - it is much brighter in the longer W4 wavelength than in the shorter W1 and W2, and this time these were not limiting magnitudes, as they were for J145736.52+182507.8. A big infrared excess could mean one of our favorite classes of conjecture - a megastructure.

 

Look at the quality control flags:

ccf 00Pp

One character per band (W1/W2/W3/W4) that indicates that the photometry and/or position measurements of a source may be contaminated or biased due to proximity to an image artifact:

P,p = Persistence. Source may be a spurious detection of or contaminated by a latent image left by a bright star.

So, no reason to think this thing has any excess IR emission.

So, it could easily be an imaging artifact and there is no way to tell. You know - the old extraordinary claims/extraordinary evidence thing. We’ll keep looking for more dips, and perhaps we’ll see something interesting in the future, but for now, we’ve got nothing much. However, I’m not overly discouraged. Boyajian’s star doesn’t exhibit an infrared excess, and there’s still lots of interest attached to it.

Are We Any Wiser, Then?

The first lesson from all this is that amateur attempts to mine the astronomical databases for little nuggets of holy cow are likely to be frustrated. We have cataloged billions of objects but only really studied a relative handful. Also, some of the data we do have available for exploration has problems. There might in fact be a star that goes missing from a catalog, but trying to figure out what happened to it will be frustrated by the lack of follow up observations.

For now, most of the people who get credit even for minor astronomical discoveries will overwhelmingly be the ones who make an intelligent choice of targets and point their telescopes at them for years of painstaking observations, followed by sophisticated and careful analysis. As far as I can tell, they are also the ones who deserve the credit.

However, this is not by itself a sufficient reason to give up, since after all, it’s quite pleasing to take a magic carpet ride among the stars looking for rarities. It’s your universe as much as anyone else’s, and we know orders of magnitude more about than our grandfathers did. So, feel free to download Aladin or similar tools and poke around the deep sky in whatever direction you like. Please, just let us know if you find anything.

Charity 2.0

Back in June 2015 we created a list of charities worth supporting. As it's always a good time to support organizations that are changing the world for better we're doing it again. 
Abigail Harrison (Aspiring astronaut & scientist, founder and spokesperson for The Mars Generation)

TheMarsGeneration.org which is a nonprofit setup by myself and a team of astronauts, engineers and others. The mission is to excite and educate students and adults about the importance of human space exploration and STEM education to the future of humanity.

The organisation is now in its second year of operation. It is 100% volunteer driven, has provided 10 students with financial need full paid space camp scholarships in 2016 and will do the same for summer of 2017, has over 650 Student Space Ambassadors, over 350 founding members so far and an online following of over 700,000 fans and followers. Last year we reached over 10 million people and we anticipate year two to be even bigger!

Mike Simmons (Founder and CEO of "Astronomers without Borders")

I started Astronomers Without Borders to connect people around the world through our common passion. Now we're doing a lot to advance STEM through astronomy, sharing what those of us have in developed countries with others..

Morgan Rehnberg (PhD student at University of Colorado, works with Cassini to study Saturn’s rings) 

I support the Wikimedia Foundation each year because I can't imagine what I'd do for even a day without Wikipedia. Whether it's finding a quick reference for the mass of a moon or a high-resolution copy of the Hubble deep field, basically all the information I could ever want is a click or two away. It's certainly an organization with its share of faults, but I can't imagine the amount of effort it would take to start over from scratch.

Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

I think there are many worthy charities. I mentioned one of them in the latest episode (64) of the Unseen Podcast: Doctors Without Borders. As for space or astronomy related charities, I have donated at various times to the SETI Institute, the Planetary Society, and the AAVSO. At the AAVSO, you can adopt the variable star of your choice for $20/year, which is a good way to help them.

Little green/grey men

http://www.thinkaboutit-aliens.com/
There where hundreds of movies and tv-series showing extraterrestials from distant worlds. Giving how life on our planet evolved and considering basic components necessary for intelligent life to emerge, who in your oppinion might have been the closest in depicting alien visitors from outer space? 

Mike Simmons (Founder and CEO of "Astronomers without Borders")

There's really no way to know until we start finding other life. We know the components and evolution of life on Earth but there could be other ways life can be created. Astrobiologists have done a lot of work in this field trying to determine what the possibilities are but without data we're pretty much blind.

The common feature of most TV shows and movies is that intelligent alien life is somewhat humanoid. That makes sense for anything made before computer generated graphics (CGI) since actors are (mostly) human. With CGI anything is possible now but who knows?


Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

I consider myself a science fiction aficionado as well as a (takes a deep breath) UFO buff. It is safe to say, therefore, that I have seen my share of what extraterrestrials “should look like”, according to Hollywood and so-called UFO witnesses. Unfortunately, most, if not all, of these so-called "aliens" are a direct results of anthropomorphic biases – bestowed upon us by the greatest of all special effects artists on one side and alleged UFO encounters on the other.  In a nutshell, the biases have directly shaped what extraterrestrials, from a human perspective, should look like. Most, if not all, of these aliens appear to look strikingly similar to us: a head, two eyes, nose, mouth, two arms, two legs, and in some astonishing situations, they even speak … English. Nonetheless, If I were to chose my favorite “alien”, I would focus on the latest movie The Arrival. These extraterrestrials, which are heptapods, sparked my interested in contemplating what type of planet these aliens could have evolved on. Because they were large and could not breath oxygen, we can speculate that gravity and a unique atmosphere directly influenced these aliens. Nevertheless, The Arrival is science fiction and any portrayal of extraterrestrials, from humans, will unquestionably be wrong.


Nicole Guggliucci (“Noisy astronomer”, blogger, educator, post-doc)

I think it's safe to say that none of us have any CLUE what life might look like... just talk to a biologist to get a sense of the complexity and seeming randomness of life on Earth and its evolutionary pathways.

That said, I loooves me some science fiction and fun speculation. Of course, scifi for tv and film is often limited. In order to tell compelling stories over long periods of time with complex characters, you often need human actors. Thus, we get the "humanoids with bumpy foreheads" in so much of our television and movies. Even with CGI available to us, storytellers will create humanoid forms because that is what we tend to identify with emotionally.

I like to sneak off to books to find truly bizarre descriptions of potential alien sentients. My favorite is the Galactic Football League series by Scott Sigler. Though his universe teems with intelligent creatures with all kinds of bizarre (though, admittedly, often Earth-like) forms, and their physiology determines what positions they play in American football. I can't think of a better way to get a sports fanatic excited about science fiction! It also makes for some bizarre cosplay options when we go to conventions... Anyway, with full color illustrations in some of the books in the series, you can really enjoy the possibilities for sentient species there.


Andrew Rader (SpaceX engineer, MIT PhD, author)

Probably one of the most realistic is 'Contact' with Jody Foster based on Carl Sagan's book of the same name. In a nod to Fermi's Paradox, the Vegans (people of Vega, not non-meat eaters) developed technology first and are thus far more advanced than we are. They don't so much visit Earth as give us a technological boost to help us transcend our basic corporeal bipedal primate existence.



Paul Carr
(Space Systems engineer at NASA, podcaster, blogger, investigator)

To me, science fiction movies and TV shows are not so much about aliens, but about ourselves - human myths, nightmares, hopes, and aspirations. For example, Klaatu in The Day the Earth Stood Still is not alien at all - he is an idealized human, and in fact brings the Christ story into the atomic age. ET seemed to follow a similar pattern, but he wasn't as preachy. Most of the Star Trek aliens are really just exaggerations of human traits that we either fear, admire or detest, and Q is not unlike the all-powerful, omniscient, severely judging God of our Abrahamic religions. I have to admit a mild fascination with the Vulcans. What would it be like to always act rationally?I don't know the answer to that question, but I don't think Vulcans are really all that alien.

Aliens that were really alien would be too hard to understand and would not serve a good role in an entertaining narrative. They would, I expect, be about as far from Dr. Who or Chewbacca as I am from a three-toed sloth. I am not talking about how the aliens look, or how many eyes they have, or whether they swim in a vat of blue liquid - details I regard as relatively unimportant. What you won't see on the surface is how they evolved, which governs to a great extent how they approach and perceive reality and how they think. If, as would be necessary for visitors from other worlds, they are the creators (or at least the heirs) of unimaginably advanced technology, then they think with great power and solve problems we don't even know exist. We don't even understand yet just how alien this would make them, or how absurd and puzzling their motives and actions would be to us. We certainly don't know why there would be here, but it is unlikely to kill us, to eat us, or save us from ourselves.

Such aliens as I imagine, if they exist, would make lousy movie villains or heroes, but I wish someone would try it.



Ciro Villa
(technologist, application developer, STEM communicator)

Although we envision aliens mostly looking like us, there is no reason to not think that some yet to be discovered chemical and organic mechanisms, might exist elsewhere in the Universe that allowed for the rise on other worlds for the formation and rise of species that do not even remotely resemble us.

Just by looking at the shear diversity of Carbon based life forms right here on Earth, gives room to imagine the existence of many other varied types of non-anthropomorphic looking alien being. It is hard to pinpoint one fictional representation of an alien species by one of the many Science fiction artworks. But if one popular franchise comes to mind, that would be Star Trek. In their long running shows, the creator of this, one of the most successful sci-fi/space franchises have been able to present a tremendous diversity of alien species to the audience, thus sparking the light of imagination in the human mind.

Next Giant Leap

It looks like we’re about to become a multiplanetary species in a matter of 10-15 years. Would you choose to risk and become a part of a history as one of the first settlers arriving on Mars or would you wait until it gets safer? What would you take with you to kill boredom on a months long trip?

andrewraderAndrew Rader (SpaceX engineer, MIT PhD, author)

The answer to that question depends on the specific circumstances, but I certainly wouldn’t rule out going myself if given the opportunity.

I’d play a lot of board games in computerized form (hopefully some turn-based ones with friends at home). I can do that for weeks on end and be perfectly happy.


sethshostakSeth Shostak (Senior Astronomer and Director of the Center for SETI Research at SETI Institute)

Of course I’d love to go into space, but who knows if they’d TAKE me!

 


imageNicole Guggliucci (“Noisy astronomer”, blogger, educator, post-doc)

You know, when I was younger than I am now, I’d say, “sign me up!” But I think today I’d pass since I like the cool stuff I’m doing here on Earth. When they start needing astronomy professors on Mars, then I’ll go, with the caveat that my dog has to come, too! As for boredom… I have a huge to-read list on my Kindle, so I’m all ready for that. 🙂


frasercain1Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

Although I’d love to take a safe vacation on Mars, I really love Planet Earth. Living on Mars will be a constant struggle, and that takes a special kind of person, willing to take the risks to push humanity forward. Anyone will to step forward, and is aware of the risks has my support. But personally, I haven’t even finished exploring Earth yet.


paulcarrPaul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

In the unlikely event that I could qualify to go on an early Mars Mission, it is not the risk that would deter me, even though I regard the risks as considerable. The dangers, it seems to me, are roughly comparable to those faced by countless generations of humans before us when they struck out in search of new lands and new freedoms. There are risks of disease, deprivation, and exposure to harsh environments. I have little doubt that at least some of the early Mars pioneers will meet an untimely death. As Geoffrey Landis wrote in his novel Mars Crossing, Mars is for heroes. I believe it eventually will become much more repeatable and safer, but the wait might be too long. I think there will a surplus of volunteers, even after the first deaths. Even those who successfully establish colonies and begin to raise families on Mars will find it tough going with many challenges. I believe the early Mars generations will genetically engineer themselves to adapt better, as well as their plants, and perhaps even their animals.

To kill boredom on the long trip, of course the younger crew members will immerse themselves in VR environments and play games all day when not working out on the treadmill. However, we older folks who remember rotary dial phones and manual transmissions – we will immerse ourselves in VR environments and play games all day.

OSIRIS REx

OSIRIS-REx mission will meet with asteroid “Bennu” in 2018, collect samples and return back to Earth. What can we learn from this mission and how important it is? What’s the next best object to collect samples from?

Morgan Rehnberg (PhD student at University of Colorado, works with Cassini to study Saturn’s rings)

morgan

Samples from an asteroid like Bennu will help us understand the conditions out of which planets like Earth formed in the early Solar System. With each new exoplanet discovery, we find more evidence that confounds the traditional model of planetary formation, so this is vital information. If I could sample from elsewhere in the Solar System, I’d pick either Meecury or Mars. We need additional samples from cratered bodies in order to refine our dating methods. Today, the ages of pretty much everything are calibrated solely by the rocks returned from the Moon by the Apollo astronauts!


Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

paulcarr

OSIRIS-Rex is not the first asteroid sample return. In fact, when it returns to Earth in 2023, it should be the third sample return, with the Japanese Hayabusa and Hayabusa 2 missions ahead of it. Hayabusa only returned a tiny sample from an S-class asteroid, but it was confirmed to be asteroidal in nature. The NEAR mission launched in the mid 1990s was the first asteroid rendezvous mission, but did not return samples. From my perspective, the most important aspect of studying asteroids is to determine if they are ore-bearing, and I’m not clear if sample return does a whole lot better for that purpose than instruments like an X-ray spectrometer (OSIRS-REX is flying one called REXIS), which can measure the elemental composition. My understanding is that the asteroid Bennu was picked as a target because it is a C type asteroid, and may contain some organic material, which would be of great scientific interest. A sample return will of course provide tremendous detail about the material composing the asteroid’s regolith, and I always hope there will be interesting surprises – maybe even water bearing minerals. So far, the closest look we have had to a C type asteroid was in 1999, when NEAR flew by the main belt asteroid Mathilde. What NEAR saw was surprising – two huge craters in comparison to the size of the body. To absorb impacts that large, Mathilde must be quite low density – a sort of spongy texture. It will be interesting to see if Bennu is similar, and its laser altimeter should enable some precise measurements of its gravity field.


Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

antonioparis

Asteroid Bennu, like all asteroids, is a “time capsule” loaded with vital information regarding the formation of the Solar System. More importantly, the Osiris-Rex mission to Bennu is centered on studying the surface of the asteroid, which is covered in carbonaceous material. This material is a critical element in organic molecules required for life. It is possible, therefore, that the Osiris-Rex mission could finally unlock the secrets to how life on Earth began, and, more importantly, could provide clues for the search for life elsewhere in the Solar System!

To boldly go where no man has gone before

Many associate survival of our species with humanity becoming a interplanetary civilization. It’s important to prepare ourselves for an event that might one day force us to leave our home planet. In more distant future we might have to leave our solar system. Will we ever become an intergalactic civilization like we already are in science-fiction? What’s the hardest obstacle to overcome?

Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

frasercain1

The hardest obstacle to overcome is the weightless environment of space itself. Humans evolved in Earth’s gravity, and without it, our bones soften, our muscles atrophy, and our bodies suffer. Until we can develop some kind of artificial gravity environment, like a rotating space station, space travel will be lethal for any length of time. We need to first learn to just live and survive in space before we have any hope of reaching out to another star system.


Andrew Rader (SpaceX engineer, MIT PhD, author)

andrewrader

If we survive for the next 100 years, I think we will become an interstellar civilization (although maybe not for several hundred years – the first step is to expand into our solar system first). The greatest challenges are in rough order of difficulty starting with the most challenging: I) Surviving long enough to reach the stars (avoiding disaster on our planet, whether created by humans or something external); II) The will to expand beyond Earth (will we even choose to do so, or will we for example, transcend into AI); III) The vast distances involved and the technological challenges involved. These include the velocity you need to travel and/or time it would take to get to another star, and the energy you would need to be able to produce for an exceedingly long time at a great distance from any light or heat from the Sun (even our best nuclear technology can’t currently do this). It’s a problem of distance, time, and energy. Here’s a links to my videos about it.

Robotic: https://www.youtube.com/watch?v=Lt0YMLvgT5k

Human colonization: https://www.youtube.com/watch?v=0m7gcZLUcPU


Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

antonioparis

Emigrating beyond Earth is not a difficult task from a technological perspective. The current challenges are more centered on budgets rather than technology or human will. The most difficult challenge of interplanetary travel, in my opinion, is the challenge of humanity. Humans, today, are in the brink of destroying ourselves and our planet as well. The human population is increasing at an exponential pace while Earthly resources are diminishing at equal speed. Humans, eventually, will nonetheless have to travel beyond earth to survive as a species. We must, however, overcome the most difficult obstacle we conveniently ignore: the will to get along with other humans.


Pamela Gay (assistant research professor at Southern Illinois University, writer, co-host of Astronomy Cast)

pamelagay

Our science fiction stories show humanity escaping out to the stars, but our more terrestrial reality seems determined to keep us grounded. Two major problems currently face us. The first, quite simply, is resources. Human space exploration is a rich nation’s possibility, and as our global economy flattens, it is becoming harder to imagine any government-driven effort to colonize other worlds and other solar systems. At the same time, it’s impossible to predict what commercial space will make possible, and the extreme wealth of an elite few may be able to fill in gaps left by governments. While money is a current problem that has the potential to go away, the second problem is more likely to stay. That problem is human frailty. We are a race that can die from environmental extremes and disease. We periodically wage war, and we release toxins into our environment through our accidents and ignorance. The real question is, will we stay alive long enough to overcome money?


Ciro Villa (technologist, application developer, STEM communicator)

cirovilla

Be it for natural or man-made causes, there are a variety of possible future scenarios that we earthlings could face that could bring about the end of humanity or even life in its entirety here on Earth. This is why it is important to give serious consideration to plans for us to become a space faring civilization. Although we have a long way to go to arrive at the necessary level of technology and for us to be able to overcome a number of practical obstacles to make this feasible, it is important to start working toward this goal, this way at least our future generations can hope for the continuation of our species by embarking on “space lifeboats” toward new galactic shores. This is not going to be easy and it is going to take time and effort. We are now just making our first “baby steps” toward understanding how the human body reacts to hostile space environments and the lack of gravity and questions about our ability to withstand space environments are just now attempted to be answered with the hard work of our astronauts on the International Space Station. Probably one of the hardest obstacle to overcome is going to be having the ability to take down the barrier of skepticism of large portions of the public as a whole and raise realistic and not alarmist awareness that we live on a very fragile planet and that it is important to build contingency plans to leave it if we want the continuation of our species. Of course we hope that we will be able to achieve this goal before it will be too late.


Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

paulcarr

I tend to be skeptical of top-down views of the human future, and the more our species is spread out into the solar system, the more it will diverge, with separate populations each pursuing their own interests. From, this is an optimistic view. The kings and battles view of history has always been something of a delusion, and I think in the future it will become clear, with hopefully no kings and many fewer battles. So, I think the simple-minded notion of a colossal public works project sending great arks full of people in uniform to seed humanity among other worlds is not only unlikely, it is undesirable and likely to fail. Someone with the power to make that happen has too much power. However, I do believe that as mastery of space travel, energy and information compounds, our wealth will grow to the point that the project of embarking with one’s friends and families to the stars is a choice many will have. How this will be accomplished I don’t know, and neither does anyone else, just as the hunter gatherers just before the neolithic revolution could not possibly see what their world was about to become. It is only an approximate result, but Daniel Cartin estimated that the range needed from a starship in order to establish a network of colonies in the local solar neighborhood was about 10 light years. That’s a long distance from the human perspective, but is a cosmic stone’s throw, and when humans can live for hundreds of years and casually command petawatts of power, it will not be a daunting sea to cross. By then, we may not even need to send biological bodies – just beam our minds ahead at the speed of light after the ship arrives at a suitable destination. It would of course, take millions of years to colonize even part of the galaxy, and such a diaspora could easily lose steam after a while. Still there is the chance it will continue until we either collide the current residents or fill up the available resources. Of course, by “we” I mean descendants of humans, but they will be fragmented into at least as many many societies as solar systems they occupy. There will be no emperor. How we go from there to an intergalactic society I have no idea. Crossing ten, or even a hundred light years is nothing compared to crossing millions of light years. Each of is free to imagine their own scenario, but I have no idea how it could happen.

Vacation on the ISS

Everyone at least a little bit interested in space and astronomy dreams about going into space. There were 7 space “tourists” that paid money to go to the Internation Space Station. If given the opportunity to go for a little vacation in Earth’s orbit, would you take up that chance? How would you spend that time?

Andrew Rader (SpaceX engineer, MIT PhD, author)

Of course! (And hopefully beyond orbit too.)  Most people get space sick for the first few days in space from the changes in the way 0G accelerations are perceived in your inner ear, but hopefully that wouldn’t distract too much from the incredible views of our home planet and the sheer joy of floating free in microgravity. With views and fun combined, it space should prove to be one of the finest travel destinations imaginable. However, I think the main reason to go to space is to learn how to live there longer term. I’d want to be productive in actually building and testing hardware, conducting experiments, and paving the way for the long term settlement of space.

Ciro Villa (technologist, application developer, STEM communicator)

If given the opportunity, I would absolutely take the once in a lifetime chance to go up in space on the ISS.  Many people do not realize and appreciate the fact that all the hard work astronauts do up there in orbit day in and day out benefits us all down here on Earth.  Many of the technological and scientific advancements that have improved our quality of life right here on Earth have been spear headed by the research and experiments performed in the unique, natural zero gravity laboratory that the Earth’s orbiting space station provides, which has yielded so many invaluable findings and discoveries regarding how things behave in the absence of gravity. So, how would I spend my time up there?  Well, I suppose that would depend on what I would be allowed to do.  If under the constraint and watchful eye of my sponsoring government agency, then I would probably not have much of a choice but do the daily work and conduct the scheduled experiments which would be a great experience and opportunity all by itself.  But if I had “free reign”, then I would probably exploit technology to the max, of course!  Explore, investigate, and learn all that I could and then share with the public.  Have video conferencing, live updates, in short let the world see what I see and share my experiences in real time.  Plus hopefully enjoy some space pizza… http://news.bbc.co.uk/2/hi/americas/1345139.stm

Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

Given that I could afford it, you bet I would. I imagine I would spend much of the time staring out of the observation window at the Earth, camera ready. The rest of the time I would spend learning the details of astronaut life and tumbling around in microgravity. I would volunteer to help out with any of the regular work as well, and perhaps they would humor me a bit. No Bowie covers, though, which is best for all concerned.

Something huge is heading our way!

Scientific accuracy in media coverage of recent events is really a big problem today. Which media outlets you find best in being fair while covering controversial topics and which are terrible at it? Where should a person go for a most scientific, skeptical, logic view of everyday life (especially when it revolves around astronomy)?

Nicole Gugliucci (“Noisy astronomer”, blogger, educator, post-doc)

Well, it’s a little biased, but I do love to send my students to Universe Today or Bad Astronomy when it comes to the best coverage of astronomy news. Phil Plait in particular takes a skeptical look at everything that comes into his field of view, so he is a great filter against things that are bogus. That said, you cannot contain his enthusiasm when something scientifically wonderful IS announced!  When I’m delving into topics that are not astronomically related, I tend to get a lot of my news from public radio (NPR in the US). There is some pretty good science coverage, but mostly I go there for news on society, politics, and the everyday life stories that effect us without a whole lot of hyperbole. So check out and support your local public radio!

Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

This is a problem, and I’m afraid it’s not easy finding trustworthy sources. I’m pleasantly surprised when a mainstream media outlet treats a science story with nuance and depth. I’ve been involved in a few space exploration stories, and have even helped brief reporters. In those cases I had a deep knowledge of the subject matter, and I saw their stories so oversimplified that they were wrong. Only a few mainstream reporters understand technical issues, and even if they do, they are under time pressure that prohibits deep investigation and follow up. The other problem is that there seems to a single setting on the dial – the scientific finding is true, because a scientist published it, their institution wrote a press release about it, and now the media is reporting on it. The truth is, that reasonable doubt often exists, and the finding may ultimately fail, or in the worst case, be retracted. Some studies are even fraudulent, although I suspect that this is very rare in astronomy and other fields where there is little money at stake. Due diligence involves consulting independent experts and explaining to the reader what the assumptions, uncertainties and missing pieces are, instead of looking no deeper than the press release. Press releases are very likely not written by the scientists or engineers involved, but by a public relations team whose interest is drumming up attention and funding for their institution. We saw that quite recently in the Fast Radio Burst story, in which one research group thought they had identified a host galaxy for an FRB. The media reported it as if it were fact, when there were actually serious doubters within the radio astronomy community, who have since published contrary findings. The public needs to understand that these professional communities may need a long time to sort things out. Follow up is needed, and should be demanded of any media outlet you read for these stories. I want to point out that are some good, well informed reporters in the space and astronomy world, although many are now in new media. I recommend following Dr. Brian Koberlein’s articles (now in Forbes), and the Astronomy Cast with Pamela Gay and Fraser Cain. Other good communicators include Phil Plait, Emily Lakdawalla of the Planetary Society, and for physics, Dr. Ben Tippett of Titanium Physicists. That is not an exhaustive list, but a good start.

Robert Novella (co-founder and vice-president of New England Skeptical Society, co-host of Skeptics’ Guide to the Universe)

There are many wonderful astronomy news outlets out there. I often chide myself for not looking into them for fully but that’s because I’m so happy with my go-to Astronomy news outlet Phys,org. It covers not only Astronomy very well but all the major hard sciences in a way that’s in the sweet spot for scientifically literate readers. Technical, with no fluff or over-the-top jargon.  For a site that is both scientific and skeptical there’s none better than Phil Plait’s Bad Astronomy. Phil wins the trifecta in astronomy reporting for the following reasons. 1) Phil knows his shit. His technical details and factoids are spot on. 2) He is a skeptic who knows pseudoscience when he sees it and is not shy about calling it out. 3) His giddy love of science and humor shine through in all is writings.