One question

You have the chance to meet in person Galileo Galilei, Isaac Newton, Albert Einstein, Carl Sagan and you can ask each of them one question. What question would it be?

Andrew Rader (SpaceX engineer, MIT PhD, author)

andrewrader

Galileo Galilei – What do you think about humans visiting the Moon? Isaac Newton – What do you consider your greatest achievement? Albert Einstein – What inspired you to start thinking about the great problems of physics? Carl Sagan – If you could ask Galileo one question, what would it be? (I think he’d have a better answer than I did)


Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

frasercain1

I really wish I could go back in time and talk to these scientists, especially Galileo. I’m not sure I’d have a lot of questions for them, but I’d love to be able to give them an update on the science they figured out. I could tell Galileo about the moons of Jupiter, and the amazing features we’ve found on them. I could let Newton know about all the discoveries we’ve made about gravity, and how his calculations still form the basis of so much of our science and mathematics. I’d love to let Einstein know that Relativity is still holding strong 100 years after he first described it, including the recent direct detection of gravitational waves. I’m sure Sagan would love an update on the state of Solar System exploration and to learn about what we saw with a flyby of Pluto, or the rovers on Mars.


Nicole Guggliucci (“Noisy astronomer”, blogger, educator, post-doc)

image

Can I trade in my answers with the others and just talk with Carl Sagan? I think I’d ask him a BUNCH about methods of science communication, searching for extraterrestrials, and how to bring us away from the brink of ecological disaster. Maybe that’s cheating, but I’d get a lot more out of a conversation with him than the others!


Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

antonioparis

If I could travel back in time, to where the father’s of modern astronomers lived, I would ask them a variety of questions. Each of these questions, however, would be shaped to fit the era. For Galileo, I would ask him how did you react when you first observed the moon’s of Jupiter? What was your initial reaction? For Newton, I would ask him did an apple actually fall toward your feet, which shaped your curiosity to tackled gravity. For Albert Einstein, I would ask him he he could stop the building of atomic weapons during WWII, would he do it. And, finally, I would ask Carl Sagan … do you believe in God, seriously.

OSIRIS REx

OSIRIS-REx mission will meet with asteroid “Bennu” in 2018, collect samples and return back to Earth. What can we learn from this mission and how important it is? What’s the next best object to collect samples from?

Morgan Rehnberg (PhD student at University of Colorado, works with Cassini to study Saturn’s rings)

morgan

Samples from an asteroid like Bennu will help us understand the conditions out of which planets like Earth formed in the early Solar System. With each new exoplanet discovery, we find more evidence that confounds the traditional model of planetary formation, so this is vital information. If I could sample from elsewhere in the Solar System, I’d pick either Meecury or Mars. We need additional samples from cratered bodies in order to refine our dating methods. Today, the ages of pretty much everything are calibrated solely by the rocks returned from the Moon by the Apollo astronauts!


Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

paulcarr

OSIRIS-Rex is not the first asteroid sample return. In fact, when it returns to Earth in 2023, it should be the third sample return, with the Japanese Hayabusa and Hayabusa 2 missions ahead of it. Hayabusa only returned a tiny sample from an S-class asteroid, but it was confirmed to be asteroidal in nature. The NEAR mission launched in the mid 1990s was the first asteroid rendezvous mission, but did not return samples. From my perspective, the most important aspect of studying asteroids is to determine if they are ore-bearing, and I’m not clear if sample return does a whole lot better for that purpose than instruments like an X-ray spectrometer (OSIRS-REX is flying one called REXIS), which can measure the elemental composition. My understanding is that the asteroid Bennu was picked as a target because it is a C type asteroid, and may contain some organic material, which would be of great scientific interest. A sample return will of course provide tremendous detail about the material composing the asteroid’s regolith, and I always hope there will be interesting surprises – maybe even water bearing minerals. So far, the closest look we have had to a C type asteroid was in 1999, when NEAR flew by the main belt asteroid Mathilde. What NEAR saw was surprising – two huge craters in comparison to the size of the body. To absorb impacts that large, Mathilde must be quite low density – a sort of spongy texture. It will be interesting to see if Bennu is similar, and its laser altimeter should enable some precise measurements of its gravity field.


Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

antonioparis

Asteroid Bennu, like all asteroids, is a “time capsule” loaded with vital information regarding the formation of the Solar System. More importantly, the Osiris-Rex mission to Bennu is centered on studying the surface of the asteroid, which is covered in carbonaceous material. This material is a critical element in organic molecules required for life. It is possible, therefore, that the Osiris-Rex mission could finally unlock the secrets to how life on Earth began, and, more importantly, could provide clues for the search for life elsewhere in the Solar System!

To boldly go where no man has gone before

Many associate survival of our species with humanity becoming a interplanetary civilization. It’s important to prepare ourselves for an event that might one day force us to leave our home planet. In more distant future we might have to leave our solar system. Will we ever become an intergalactic civilization like we already are in science-fiction? What’s the hardest obstacle to overcome?

Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

frasercain1

The hardest obstacle to overcome is the weightless environment of space itself. Humans evolved in Earth’s gravity, and without it, our bones soften, our muscles atrophy, and our bodies suffer. Until we can develop some kind of artificial gravity environment, like a rotating space station, space travel will be lethal for any length of time. We need to first learn to just live and survive in space before we have any hope of reaching out to another star system.


Andrew Rader (SpaceX engineer, MIT PhD, author)

andrewrader

If we survive for the next 100 years, I think we will become an interstellar civilization (although maybe not for several hundred years – the first step is to expand into our solar system first). The greatest challenges are in rough order of difficulty starting with the most challenging: I) Surviving long enough to reach the stars (avoiding disaster on our planet, whether created by humans or something external); II) The will to expand beyond Earth (will we even choose to do so, or will we for example, transcend into AI); III) The vast distances involved and the technological challenges involved. These include the velocity you need to travel and/or time it would take to get to another star, and the energy you would need to be able to produce for an exceedingly long time at a great distance from any light or heat from the Sun (even our best nuclear technology can’t currently do this). It’s a problem of distance, time, and energy. Here’s a links to my videos about it.

Robotic: https://www.youtube.com/watch?v=Lt0YMLvgT5k

Human colonization: https://www.youtube.com/watch?v=0m7gcZLUcPU


Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

antonioparis

Emigrating beyond Earth is not a difficult task from a technological perspective. The current challenges are more centered on budgets rather than technology or human will. The most difficult challenge of interplanetary travel, in my opinion, is the challenge of humanity. Humans, today, are in the brink of destroying ourselves and our planet as well. The human population is increasing at an exponential pace while Earthly resources are diminishing at equal speed. Humans, eventually, will nonetheless have to travel beyond earth to survive as a species. We must, however, overcome the most difficult obstacle we conveniently ignore: the will to get along with other humans.


Pamela Gay (assistant research professor at Southern Illinois University, writer, co-host of Astronomy Cast)

pamelagay

Our science fiction stories show humanity escaping out to the stars, but our more terrestrial reality seems determined to keep us grounded. Two major problems currently face us. The first, quite simply, is resources. Human space exploration is a rich nation’s possibility, and as our global economy flattens, it is becoming harder to imagine any government-driven effort to colonize other worlds and other solar systems. At the same time, it’s impossible to predict what commercial space will make possible, and the extreme wealth of an elite few may be able to fill in gaps left by governments. While money is a current problem that has the potential to go away, the second problem is more likely to stay. That problem is human frailty. We are a race that can die from environmental extremes and disease. We periodically wage war, and we release toxins into our environment through our accidents and ignorance. The real question is, will we stay alive long enough to overcome money?


Ciro Villa (technologist, application developer, STEM communicator)

cirovilla

Be it for natural or man-made causes, there are a variety of possible future scenarios that we earthlings could face that could bring about the end of humanity or even life in its entirety here on Earth. This is why it is important to give serious consideration to plans for us to become a space faring civilization. Although we have a long way to go to arrive at the necessary level of technology and for us to be able to overcome a number of practical obstacles to make this feasible, it is important to start working toward this goal, this way at least our future generations can hope for the continuation of our species by embarking on “space lifeboats” toward new galactic shores. This is not going to be easy and it is going to take time and effort. We are now just making our first “baby steps” toward understanding how the human body reacts to hostile space environments and the lack of gravity and questions about our ability to withstand space environments are just now attempted to be answered with the hard work of our astronauts on the International Space Station. Probably one of the hardest obstacle to overcome is going to be having the ability to take down the barrier of skepticism of large portions of the public as a whole and raise realistic and not alarmist awareness that we live on a very fragile planet and that it is important to build contingency plans to leave it if we want the continuation of our species. Of course we hope that we will be able to achieve this goal before it will be too late.


Paul Carr (Space Systems engineer at NASA, podcaster, blogger, investigator)

paulcarr

I tend to be skeptical of top-down views of the human future, and the more our species is spread out into the solar system, the more it will diverge, with separate populations each pursuing their own interests. From, this is an optimistic view. The kings and battles view of history has always been something of a delusion, and I think in the future it will become clear, with hopefully no kings and many fewer battles. So, I think the simple-minded notion of a colossal public works project sending great arks full of people in uniform to seed humanity among other worlds is not only unlikely, it is undesirable and likely to fail. Someone with the power to make that happen has too much power. However, I do believe that as mastery of space travel, energy and information compounds, our wealth will grow to the point that the project of embarking with one’s friends and families to the stars is a choice many will have. How this will be accomplished I don’t know, and neither does anyone else, just as the hunter gatherers just before the neolithic revolution could not possibly see what their world was about to become. It is only an approximate result, but Daniel Cartin estimated that the range needed from a starship in order to establish a network of colonies in the local solar neighborhood was about 10 light years. That’s a long distance from the human perspective, but is a cosmic stone’s throw, and when humans can live for hundreds of years and casually command petawatts of power, it will not be a daunting sea to cross. By then, we may not even need to send biological bodies – just beam our minds ahead at the speed of light after the ship arrives at a suitable destination. It would of course, take millions of years to colonize even part of the galaxy, and such a diaspora could easily lose steam after a while. Still there is the chance it will continue until we either collide the current residents or fill up the available resources. Of course, by “we” I mean descendants of humans, but they will be fragmented into at least as many many societies as solar systems they occupy. There will be no emperor. How we go from there to an intergalactic society I have no idea. Crossing ten, or even a hundred light years is nothing compared to crossing millions of light years. Each of is free to imagine their own scenario, but I have no idea how it could happen.

We’re here!

We find new exoplanets every day, we found more than 3000. We’re very close to finding a planet very similiar to Earth that harbors life. What do you think about possibility of some other civilization discovering our planet and thinking “Wow, this planet may harbor life, it’s “OurPlanet”‘s size and in it’s star habitable zone?” How would our planet look like to a life forms like us located light years away?

Andrew Rader (SpaceX engineer, MIT PhD, author)

The answer to the question depends on their detection technology. If they merely found an average G2V star with 8-10 planets around it with a couple (Earth and maybe Mars) in the habitable zone, they’d probably simply add it to their catalog. If they were able to measure the composition of Earth’s atmosphere, they might realize that life thrived here and wonder what kind of life. If they were able to monitor and track our atmospheric composition over time, they might realize that an advanced civilization existed, but also one causing precarious changes in atmospheric concentrations of gasses like C02. This might raise the question of how wise our civilization really is, and how long it might survive.

Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

Any alien civilization that turned a powerful telescope on Earth over the last 500 million years or so would have known there’s life here by the composition of our atmosphere. And if they were sophisticated enough, they’d know what stage of the industrial evolution we’re in because of the pollution in our atmosphere. The fact that there’s life on Earth is no secret to advanced civilizations. And this is the technique that we’re about to use to find aliens around us with the next generation telescopes like James Webb.

Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

There are potentially billions of planets in our Milky Way alone. Some of these planets could harbor intelligent life capable conducting a survey of planets as well. However, we do no have any information to suggest that an intelligent species elsewhere in the Universe can understand astronomy, or for that matter planetary science, like we do. Humans, for example, have a predisposed bias to look for planets similar to Earth because we concentrate on “comparative science”, meaning we search the cosmos for “Earth-like” planets. An intelligent species that has evolved in a planet completely different than earth, including an atmosphere not comparable with Earth, could perhaps discover Earth but categorize our planet as “non-inhabitable. It is a matter of perspective.

Nicole Guggliucci (“Noisy astronomer”, blogger, educator, post-doc)

I just finished up my “Life Beyond Earth” class for the semester, so this topic has been on my mind a bit. I imagine that a civilization light years away would be interested in the presence of oxygen in our atmosphere, which typically only exists in stable form when being put out by photosynthetic life forms. A nearby civilization would probably be able to pick up our radio transmissions, but that’s IF they had sensitive enough receivers and IF they were looking in the right place. But that’s only a small bubble around us, less than 100 light years or so. I think the oxygen in our atmosphere would give away signs of life far before any of our human-created signals reached another civilization. We’ll be doing the same, by the way, as we analyze exoplanet atmospheres with the present and next generation of telescopes.

Ciro Villa (technologist, application developer, STEM communicator)

It’s an exciting and somewhat scary thought at once to think of the possibility of an extraterrestrial civilization becoming aware of our presence in the Universe with a whole series of other emotions mixed right in between.  We as humans are at the dawn of a new, exciting era of exoplanetary science and discoveries brought about by the extraordinary and accelerating advancements in our technologies.  We can see further and deeper in the Universe and our space “eyes” are getting more and more accurate.  Of course an extraterrestrial civilization finding our planet (exoplanet to them) could be more or less advanced than we are, so depending on their level of technological sophistication, could just be wondering about us as we do today or have the capability of being able to do more in order to find out if indeed there’s life on Earth or learn of our presence.  They might have the technology to easily and quickly analyze Earth or, like us they might be left wondering.  There are those that speculate that indeed there might also be a species that already know of our presence; we don’t know.  That’s when wide range of possibilities might present themselves.  We don’t know how similar this hypothetical species really is to us, neither do we know their history, the history of their evolution, their feelings, emotions, desires.  So, the number of variable and possibilities are pretty numerous and complex and the room for speculation is vast.

Galileo Galilei

On February, 15th we celebrated 452nd anniversary of Galileo Galilei’s birthday. Is it fair to say that he’s the person that influenced modern astronomy the most? How much more would he accomplish if he wasn’t seen as a heretic by the Church?

Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

Galileo was one of the very first people to see the wonders of the night sky though a telescope, and identified many of the things we take for granted now in a small telescope: the moons of Jupiter, the rings of Saturn, craters on the Moon, phases of Venus and the stars in the Milky Way. Right place, right time, right direction to point the telescope. I don’t know if it would have been possible for Galileo to not have ended up in trouble with the church. Even though he had many opportunities to keep his mouth shut and follow the party line, he kept finding new ways to enrage the church. I think he saw it as a badge of honor.

Andrew Rader (SpaceX engineer, MIT PhD, author)

That’s a tough question to answer, but certainly Galileo’s contribution to astronomy was enormous. He provided evidence to support the Sun-centered solar system by demonstrating that not everything revolves around Earth – if the four large moons of Jupiter revolve around that planet, clearly there is no hard and fast Earth-centered (or Sun-centered) rule. In addition to other scientific contributions (especially going a long way towards Newton’s law of Universal Gravitation), Galileo mapped the features of the Moon and sketched the phases of the Moon and Venus. This demonstrated that these were not perfect celestial spheres but worlds in their own right, complete with detailed features. This was probably the biggest step in going from a concept of Earth as the entire Universe to a system of many worlds – which would later be expanded into many Suns and then ultimately many galaxies. It would be hard to argue that Galileo’s accomplishments wouldn’t at least give him a strong contention for most influential astronomer ever.

Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

I would argue that Galileo Galilei was one of many great scientists, whom collectively, shaped the scientific revolution. Through the use of a refracting telescope, Galileo was able to finally put the geocentric model to rest. His observations of the moon’s of Jupiter and the phases of Venus led to direct evidence for the heliocentric model. Thereafter, using his work, others such as Kepler, Newton, and as recent as Einstein, collectivley shaped modern astronomy. One can say, therefore, that Galileo started it all.

2015

Lots have happened in 2015 – it was definitively rich year in astronomy. I asked our panelists how would they summarize year 2015? How was it for them personally?

Andrew Rader (SpaceX engineer, MIT PhD, author)

2015 was overall a great year for space – first successful recovery of the Falcon 9 with the potential to change spaceflight forever. It was also a great year for robotic spaceflight: with our first close-up images of Pluto and Charon, and the Dawn spacecraft entering orbit around Ceres using an ion engine, you might call 2015 the year of the Dwarf Planets. Here’s to a productive 2016 and times ahead!


Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

2015 was a very busy year for me – since I spent half of it trying to find an answer to the famous 1977 Wow! signal. After publishing my latest paper regarding the signal, which centered on a pair of comets, the attention from the media quickly catapulted me into the politics of science. For the most part, many scientists found my hypothesis intriguing and only further observations of these comets will seal the deal. Unfortunately, there is politics in science and I learned that a few scientists in the community, especially those working closely with SETI-like entities, would prefer that the Wow signal remains a mystery. Science requires money and the funding dries up rather quickly of the public loses interest.

 


Nancy Atkinson (Senior Editor for Universe Today, Host of the NASA Lunar Science Institute podcast & a NASA/JPL Solar System Ambassador)

2015 was a busy year in planetary exploration, with Dawn arriving at Ceres and New Horizons zooming past Pluto. This gives us a close look at two planetary bodies that until now we’ve only had pixelated views. Who would have thought we’d see a conical mountain and epsom salts on Ceres and cryovolcanoes and a ‘heart’ on Pluto? Plus Rosetta and Philae provided some drama and closeup views of a comet.  The mystery of the star KIC 8462852 definitely is an intriguing story, one that will be of interest in the year to come as well, I’m sure.  And spacecraft like Kepler, Hubble, Spitzer and others continue to show us the wonders of the Universe.  Personally, 2015 was a big year for me, as I signed a contract to write a book about robotic space exploration missions. I wrote about it here: http://www.nancyatkinson.com/blog/2016/01/15/im-writing-a-book/ Thank you to all the space and astronomy enthusiasts around the world who make my job very rewarding!

What to expect from 2016?

December is a month in which we usually summarize this ending year and decide how good it was. Let’s leave that for later and look a bit into the future. What should we expect from the year 2016.

Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

I am personally looking forward to developments in the Orion Program and Journey to Mars. Speaking of the latter, I am in the process of writing my third book, which will center on Generation: Mars. I am hopeful, moreover, that the commercial space industry will continue to make great strive in space exploration with special emphasis on Mars, asteroids, and Pluto.


Nancy Atkinson (Senior Editor for Universe Today, Host of the NASA Lunar Science Institute podcast & a NASA/JPL Solar System Ambassador)

I’m looking forward to seeing more images and data of the Pluto system coming back from New Horizons, as well as more great images and science from the two Mars rovers (Curiosity and Opportunity) and the Mars Orbiters (MAVEN, MRO, Mars Express, Odyssey,  and India’s MOM). ESA’s ExoMars Trace Gas Orbiter is scheduled to arrive in orbit at the Red Planet in March. NASA’s InSight lander was scheduled to land on Mars in September to study the planet’s interior, but the mission has been postponed at least 2 years due to a problem with one of the instruments. Also in September, the Rosetta mission will come to a crashing end with a controlled impact on the surface of comet Churyumov-Gersimenko, and the OSIRIS-Rex mission is scheduled to launch on its mission to asteroid Bennu. Of course Cassini will keep going until 2017 and it just keeps wowing us with images of Saturn and its rings and moons. The big news for 2016 in planetary exploration is that Juno will arrive at Jupiter in July. It will map the interior of the giant world as well as studying the planet’s magnetic and gravity fields and map the abundance of water vapor in the planet’s atmosphere. It also will provide the first images of the previously unexplored poles of Jupiter. 2016 should be a great year in planetary exploration!


Pamela Gay (assistant research professor at Southern Illinois University, writer, co-host of Astronomy Cast)

My gut says it will come with more budget issues, more sexual harassment and discrimination holding back women and minorities, and commercial space advancing while science for the sake of science sees the same old same old. Here’s to hoping I’m wrong on everything but commercial space!

James Webb Space Telescope

If everything goes as planned, James Webb Space Telescope will go in space and become operational in the end of 2018. It’s sometimes regarded as a successor to Hubble Space Telescope. If you could decide, where would you point it’s “eye” for a first look?
Nicole Gugliucci (“Noisy astronomer”, blogger, educator, post-doc)

I’d point it at a protoplanetary disk to see what exoplanets look like in formation! I was blown away when astronomers using ALMA (Atacama Large Millimeter/Submillimeter Array) got this image of one (https://public.nrao.edu/news/pressreleases/planet-formation-alma), so I can’t wait to see what JWST reveals in the infrared for systems like this.

Nancy Atkinson (Senior Editor for Universe Today, Host of the NASA Lunar Science Institute podcast & a NASA/JPL Solar System Ambassador)

I’m looking forward to seeing how far in space and time the Webb can look.  Will it see the very first star formation in the Universe? Will it provide a glimpse at what the earliest galaxies looked like? Will we be able to observe the formation of the first planetary systems? Will we see back even farther to moments after the Big Bang? Will JWST give us more information about the Cosmic Dark Ages?  It is expected to be able to see objects between 10 to 100 times fainter than Hubble can see, so I’m hoping its ‘first light’ will test the limits of how far JWST can see.

Andrew Rader (SpaceX engineer, MIT PhD, author)

James Webb is perfect for looking at planetary formation and early galaxies from the birth of the Universe. It’s the kind of science where it’s hard to predict exactly what we’ll find, but that’s the point! Whatever it is, it’s sure to be fascinating and improve our understanding of the cosmos and our place in it.  I hope it helps shed more light (infrared of course!) on planet formation and how typical our solar system is likely to be.

Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

Why not use the James Webb Telescope to search for alien planets? It is alleged by conspiracy claptrap that the Grays, an alleged species of extraterrestrials, are from Zeta Reticuli, which is a wide binary star system in the southern constellation of Reticulum. From the southern hemisphere the pair can be observed as a naked eye double star in very dark skies. Based upon parallax measurements, Zeta Reticuli is located at a distance of about 39 light-years from the Earth. Both stars are solar analogs and share comparable characteristics with the Sun. Although the kinematics of these stars imply that they belong to a population of older stars, the properties of their stellar chromospheres indicate they are only about 2 billion years old. On September 20, 1996, astronomers reported a provisional discovery of a hot Jupiter around Zeta-2, but the discovery was briefly retracted as the signal was caused by pulsations of the star. In 2002, moreover, Zeta-1 was scanned at an infrared wavelength of 25 μm, but no extrasolar planets were found.  The James Webb could possibly detect extrasolar planets, if any, around Zeta Reticuli and perhaps close the books on the Grays for good.

Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

James Webb should be able to look right back the edge of the observable Universe and see some of the earliest structures forming. It’ll be amazing to finally get a picture of what the Universe looked like so long ago, when everything was much closer together. How did those early galaxies form so quickly? When did the first supermassive black holes form? I can’t wait to find out the answers.

15 years aboard ISS

It’s been 15 years since we occupied International Space Station. 220 people from 17 countries visited the station and conducted total of 1760 research investigations. In your opinion what should be the ultimate fate of ISS? Should we stop funding the station or should we extend it’s presence in Earth’s orbit? What is the best thing that came from 15 years of continous human presence in low-earth orbit?
Fraser Cain (publisher at Universetoday.com, co-host of Astronomy Cast)

I think it will always be valuable to have a permanent space station in low Earth orbit, which serves as a way station for all other exploration of the Solar System. I think that the international community should continue to extend and maintain the space station for as long as we intend reaching out to other worlds. It could be used for gathering resources, assembling spacecraft, and generally learning more about what it takes to survive in space for the long term.

The best thing was just how an international collaboration came together to build a space station of this enormous scale. Although the relationship between the US and Russia is starting to fray now, it’s still an amazing accomplishment.

Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

There is no doubt that the International Space Station should be saved and used specifically for manned mission to Mars research. From 2007 to 2010, the European Space Agency (ESA), Russia, and China selected volunteers to take part in a 520-day simulated round-trip mission to Mars. Known as the Mars500 program, the volunteers were sealed in a mocked spacecraft in Moscow, Russia and took part in a study to investigate the psychological and medical aspects of a long-duration space mission. Although the Mars500 project provided valuable information as predicted, a manned mission to Mars will require long-term medical research under conditions of weightlessness, such as on the International Space Station (ISS). With the recent retirement of the US Space Shuttle fleet, the only viable option would be to use the (ISS) to simulate a mission to Mars.

The ISS is the most complex and largest international engineering and scientific project in history. It is over four times larger than Russia’s Mir space station and longer than a football field. The station’s primary goals are to enable long-term exploration of space, and provide benefits to all people on Earth. In addition to scientific research on space, additional projects that are not related to space exploration, but have expanded our understanding of the Earth’s environment, have been conducted. These experiments have included learning more about the long-term effects of radiation on crews, nutritional requirements levied upon astronauts during long-term missions in space, and developing newer technology that can withstand the harsh environment of space. Other experiments conducted over several expeditions on the ISS include:

  • Clinical Nutrition Assessments of Astronauts
  • Subregional Assessment of Bone Loss in the Axial Skeleton in Long-term Space Flight
  • Crewmember and Crew-Ground Interaction During International Space Station Missions
  • Effects of Altered Gravity on Spinal Cord Excitability
  • Effect of Microgravity on the Peripheral Subcutaneous Veno-Arteriolar Reflex in Humans
  • Renal Stone Risk During Spaceflight: Assessment and Countermeasure
  • Validation Effect of Prolonged Space Flight on Human Skeletal Muscle
  • Bodies In the Space Environment: Relative Contributions of Internal and External Cues to Self
  • Orientation During and After Zero Gravity Exposure

Although dozens of astronauts have been used as test subjects for physiological and psychological experiments, and preventive strategies and countermeasures have been implemented, we still do not have a lot of knowledge concerning long-term exposure to spaceflight. We can learn more about long-term exposure to a weightless environment, and how it will affect a manned mission to Mars, by simulating such a mission on the International Space Station. At a minimum, a crew can spend two years on the station to simulate the amount of time it would take to travel to Mars and back (not counting the amount of time spent on Mars waiting for point of departure). We can use the time spent on the station to continue with additional scientific and medical experiments to determine the effects of long-term exposure and, more importantly, develop additional (or better) countermeasures to ensure a successful mission to the Red Planet.

 

Hello, are you there?

Search for extraterrestial intelligence has been our interest since the begining of 1900s. Around that time we started broadcasting radio signals. We’ll find an exoplanet with life on its surface any minute now (or year or decade). What song, tv series and movie should we broadcast in space to let know our alien friends what a lovely and peaceful civilization we surely are?
Andrew Rader (SpaceX engineer, MIT PhD, author)

Movie and TV series, if we want to paint a good impression, I’d go for the Contact and the original Cosmos with Carl Sagan. These demonstrate that we’re interested in bettering ourselves, understand how we fit into the Universe, and are eager to learn what’s out there.

I’m not sure how an extraterrestrial would interpret music, but I’m guessing something timeless like a great classical piece would put our best foot forward. Maybe something uplifting like Beethoven’s 9th symphony (4th movement, ode to joy)?

Antonio Paris (Astronaut Candidate, Astronomy Professor, Planetary Scientist, Space Science Author)

Ever since the first radio signal was transmitted on Earth, an expanding sphere of radio signals has been traveling outward into space from the earth. The first of early radio transmissions were short-range experiments that used simple clicks and interrupts to show transmission of information in the 1890s. In 1900, Reginald Fessenden made the first — though exceptionally faint — voice transmission over the airwaves. The next year, in 1901, saw a step up in power as Guglielmo Marconi made the first ever transatlantic radio broadcast. Since then, at a distance of about light-years away from earth, our very first radio broadcasts are beginning to arrive. While it’s fascinating to envision how far our radio signals have traveled into space, it’s improbable that a technologically advanced extraterrestrial civilization would be able to receive, listen, or understand Marconi’s message.

Due to the inverse square law, radio signals transmitted into space degrade over distance. When Marconi’s signal left earth and transmitted into space in 1901, it spread out in a wave similar to dropping a stone in a lake. The waves diffused or spread out over distance due to the exponentially larger area it had to encompass. In short, because of this inverse square law, all radio signals from Earth become indistinguishable from background noise after a few light-years. However, if we could send a microwave signal for interstellar communication, at a range from 1 GHz to 10 GHz, it is possible that an alien species could receive the signal. This is, of course, assuming that such species has the technology to detect the signal, and, more importantly, are able to interpret the signal as extraterrestrial on their part.

If for some offbeat reason I was the astronomer responsible for sending such radio signal, I would send the the piano version of Ave Maria by Franz Schubert. This is, in my opinion, one of the most beautiful and peaceful sounds we could emit into deep space. For a TV series, I would transmit Cosmoswith Carl Sagan. An intelligent extraterrestrial civilization watching Cosmos would, notionally, assume that the civilization transmitting the TV signal has a rudimentary understanding of the Universe. Lastly, for a movie, I would transmit without a doubt Independence Day. Just in case the aliens decide to invade … Independence Day should serve as an essential warning to our galactic neighbors: we will kick their ass.

Nancy Atkinson (Senior Editor for Universe Today, Host of the NASA Lunar Science Institute podcast & a NASA/JPL Solar System Ambassador)

I love the song “Trip The Light”, which was used in a “Where The Hell is Matt” video (the crazy dancing guy) in 2012. I posted it on my website (http://www.nancyatkinson.com/blog/2012/07/10/dancing-around-the-world/ ) and wrote: “I hope when future generations look back at this time in history, or if an alien civilization ever found evidence of life on Earth, this is what they’d see. All anyone ever really wants is to be happy, and sometimes dancing is the only way to express it.” The song and video also expresses a one-ness across our world that we should aspire to truly make a reality. One verse says:
Remember we’re lost together
Remember we’re the same
We hold the burning rhythm in our hearts
We hold the flame
https://youtu.be/Pwe-pA6TaZk
I don’t watch much TV, so it is hard for me to pick a TV series! The easy answer would be easy to say one of the “Star Trek” series, probably the “Voyager” series because it portrayed a widely diverse crew that had to deal with lots of adversity, and they met up with lots of different alien species (OK, that actually describes ALL of the Star Trek series….)!
As far as a movie, I’m going to go with my favorite movie of all time, “Love Actually.” It shows humanity, warts and all, but despite our failings, we can still manage to figure out how to get along.